Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
NPJ Vaccines ; 7(1): 71, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764661

RESUMO

The mRNA vaccine platform has offered the greatest potential in fighting the COVID-19 pandemic owing to rapid development, effectiveness, and scalability to meet the global demand. There are many other mRNA vaccines currently being developed against different emerging viral diseases. As with the current COVID-19 vaccines, these mRNA-based vaccine candidates are being developed for parenteral administration via injections. However, most of the emerging viruses colonize the mucosal surfaces prior to systemic infection making it very crucial to target mucosal immunity. Although parenterally administered vaccines would induce a robust systemic immunity, they often provoke a weak mucosal immunity which may not be effective in preventing mucosal infection. In contrast, mucosal administration potentially offers the dual benefit of inducing potent mucosal and systemic immunity which would be more effective in offering protection against mucosal viral infection. There are however many challenges posed by the mucosal environment which impede successful mucosal vaccination. The development of an effective delivery system remains a major challenge to the successful exploitation of mucosal mRNA vaccination. Nonetheless, a number of delivery vehicles have been experimentally harnessed with different degrees of success in the mucosal delivery of mRNA vaccines. In this review, we provide a comprehensive overview of mRNA vaccines and summarise their application in the fight against emerging viral diseases with particular emphasis on COVID-19 mRNA platforms. Furthermore, we discuss the prospects and challenges of mucosal administration of mRNA-based vaccines, and we explore the existing experimental studies on mucosal mRNA vaccine delivery.

3.
Ann Rheum Dis ; 81(8): 1096-1105, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459695

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) immunopathogenesis revolves around the presentation of poorly characterised self-peptides by human leucocyte antigen (HLA)-class II molecules on the surface of antigen-presenting cells to autoreactive CD4 +T cells. Here, we analysed the HLA-DR-associated peptidome of synovial tissue (ST) and of dendritic cells (DCs) pulsed with synovial fluid (SF) or ST, to identify potential T-cell epitopes for RA. METHODS: HLA-DR/peptide complexes were isolated from RA ST samples (n=3) and monocyte-derived DCs, generated from healthy donors carrying RA-associated shared epitope positive HLA-DR molecules and pulsed with RA SF (n=7) or ST (n=2). Peptide sequencing was performed by high-resolution mass spectrometry. The immunostimulatory capacity of selected peptides was evaluated on peripheral blood mononuclear cells from patients with RA (n=29) and healthy subjects (n=12) by flow cytometry. RESULTS: We identified between 103 and 888 HLA-DR-naturally presented peptides per sample. We selected 37 native and six citrullinated (cit)-peptides for stimulation assays. Six of these peptides increased the expression of CD40L on CD4 +T cells patients with RA, and specifically triggered IFN-γ expression on RA CD4 +T cells compared with healthy subjects. Finally, the frequency of IFN-γ-producing CD4 +T cells specific for a myeloperoxidase-derived peptide showed a positive correlation with disease activity. CONCLUSIONS: We significantly expanded the peptide repertoire presented by HLA-DR molecules in a physiologically relevant context, identifying six new epitopes recognised by CD4 +T cells from patients with RA. This information is important for a better understanding of the disease immunopathology, as well as for designing tolerising antigen-specific immunotherapies.


Assuntos
Artrite Reumatoide , Epitopos de Linfócito T , Antígenos HLA-DR , Humanos , Leucócitos Mononucleares , Peptídeos
4.
Stem Cells ; 37(4): 476-488, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664289

RESUMO

When considering the clinical applications of autologous cell replacement therapy of human induced pluripotent stem cells (iPSC)-derived cells, there is a clear need to better understand what the immune response will be before we embark on extensive clinical trials to treat or model human disease. We performed a detailed assessment comparing human fibroblast cell lines (termed F1) reprogrammed into human iPSC and subsequently differentiated back to fibroblast cells (termed F2) or other human iPSC-derived cells including neural stem cells (NSC) made from either retroviral, episomal, or synthetic mRNA cell reprogramming methods. Global proteomic analysis reveals the main differences in signal transduction and immune cell protein expression between F1 and F2 cells, implicating wild type (WT) toll like receptor protein 3 (TLR3). Furthermore, global methylome analysis identified an isoform of the human TLR3 gene that is not epigenetically reset correctly upon differentiation to F2 cells resulting in a hypomethylated transcription start site in the TLR3 isoform promoter and overexpression in most human iPSC-derived cells not seen in normal human tissue. The human TLR3 isoform in human iPSC-NSC functions to suppress NF-KB p65 signaling pathway in response to virus (Poly IC), suggesting suppressed immunity of iPSC-derived cells to viral infection. The sustained WT TLR3 and TLR3 isoform overexpression is central to understanding the altered immunogenicity of human iPSC-derived cells calling for screening of human iPSC-derived cells for TLR3 expression levels before applications. Stem Cells 2019;37:476-488.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica/métodos , Receptor 3 Toll-Like/metabolismo , Epigenoma , Humanos , Imunidade Inata , Células-Tronco Pluripotentes Induzidas/imunologia , Transdução de Sinais , Receptor 3 Toll-Like/imunologia
5.
Horm Metab Res ; 50(12): 863-870, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30396220

RESUMO

In the last 3 years, the association of thyrotropin receptor gene (TSHR) variations to Graves' disease (GD) has been confirmed. It is now well established that a 30 Kb region of intron 1 of the TSHR gene is linked to GD predisposition. Elucidating the mechanism(s) by which these polymorphisms confer susceptibility is difficult but would constitute an important advance in endocrine autoimmunity in general. Two hypotheses, both postulating TSHR gene regulatory mechanisms, are discussed. One postulates differential level of expression in the thymus, involving central tolerance. The other postulates a shift in TSHR differential splicing leading to the production of soluble proteins that will have easy access to antigen presenting cells, so it is focused in peripheral tolerance. A combination of the 2 hypothesis is feasible, especially under the light of recent evidence that have identified epigenetic factors acting on TSHR intron 1.


Assuntos
Tolerância Central/imunologia , Estudos de Associação Genética , Doença de Graves/genética , Doença de Graves/imunologia , Receptores da Tireotropina/metabolismo , Autoantígenos/metabolismo , Predisposição Genética para Doença , Humanos , Receptores da Tireotropina/genética
6.
J Leukoc Biol ; 101(1): 15-27, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365532

RESUMO

Dendritic cells (DCs) are the major professional APCs of the immune system; however, their MHC-II-associated peptide repertoires have been hard to analyze, mostly because of their scarce presence in blood and tissues. In vitro matured human monocyte-derived DCs (MoDCs) are widely used as professional APCs in experimental systems. In this work, we have applied mass spectrometry to identify the HLA-DR-associated self-peptide repertoires from small numbers of mature MoDCs (∼5 × 106 cells), derived from 7 different donors. Repertoires of 9 different HLA-DR alleles were defined from analysis of 1319 peptides, showing the expected characteristics of MHC-II-associated peptides. Most peptides identified were predicted high binders for their respective allele, formed nested sets, and belonged to endo-lysosomal pathway-degraded proteins. Approximately 20% of the peptides were derived from cytosolic and nuclear proteins, a recurrent finding in HLA-DR peptide repertoires. Of interest, most of these peptides corresponded to single sequences, did not form nested sets, and were located at the C terminus of the parental protein, which suggested alternative processing. Analysis of cleavage patterns for terminal peptides predominantly showed aspartic acid before the cleavage site of both C- and N-terminal peptides and proline immediately after the cleavage site in C-terminal peptides. Proline was also frequent next to the cut sites of internal peptides. These data provide new insights into the Ag processing capabilities of DCs. The relevance of these processing pathways and their contribution to response to infection, tolerance induction, or autoimmunity deserve further analysis.


Assuntos
Células Dendríticas/metabolismo , Antígenos HLA-DR/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Diferenciação Celular , Citosol/metabolismo , Bases de Dados de Proteínas , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Monócitos/citologia , Proteínas Nucleares/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Fenótipo
7.
Diabetes ; 65(8): 2356-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27207542

RESUMO

Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Interleucina-13/metabolismo , Células T Matadoras Naturais/metabolismo , Adolescente , Adulto , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Linfócitos T Reguladores/metabolismo , Adulto Jovem
8.
J Autoimmun ; 60: 12-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911201

RESUMO

Promiscuous gene expression (pGE) of tissue-restricted self-antigens (TRA) in medullary thymic epithelial cells (mTECs) is in part driven by the Autoimmune Regulator gene (AIRE) and essential for self-tolerance. The link between AIRE functional mutations and multi-organ autoimmunity in human and mouse supports the role of pGE. Deep sequencing of the transcriptome revealed that mouse mTECs potentially transcribe an unprecedented range of >90% of all genes. Yet, it remains unclear to which extent these low-level transcripts are actually translated into proteins, processed and presented by thymic APCs to induce tolerance. To address this, we analyzed the HLA-DR-associated thymus peptidome. Within a large panel of peptides from abundant proteins, two TRA peptides were identified: prostate-specific semenogelin-1 (an autoantigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome) and central nervous system-specific contactin-2 (an autoantigen in multiple sclerosis). Thymus expression of both genes was restricted to mTECs. SEMG1 expression was confined to mature HLA-DR(hi) mTECs of male and female donors and was AIRE-dependent, whereas CNTN2 was apparently AIRE-independent and was expressed by both populations of mTECs. Our findings establish a link between pGE, MHC-II peptide presentation and autoimmunity for bona fide human TRAs.


Assuntos
Autoantígenos/imunologia , Antígenos HLA-DR/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Timo/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autoantígenos/biossíntese , Autoimunidade/imunologia , Criança , Pré-Escolar , Contactina 2/biossíntese , Contactina 2/imunologia , Células Epiteliais/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Secretadas pela Vesícula Seminal/biossíntese , Proteínas Secretadas pela Vesícula Seminal/imunologia , Timo/citologia , Fatores de Transcrição/biossíntese , Transcriptoma , Adulto Jovem
9.
Nat Commun ; 5: 5369, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25413013

RESUMO

Immunodominant epitopes are few selected epitopes from complex antigens that initiate T-cell responses. Here to provide further insights into this process, we use a reductionist cell-free antigen-processing system composed of defined components. We use the system to characterize steps in antigen processing of pathogen-derived proteins or autoantigens and we find distinct paths for peptide processing and selection. Autoantigen-derived immunodominant epitopes are resistant to digestion by cathepsins, whereas pathogen-derived epitopes are sensitive. Sensitivity to cathepsins enforces capture of pathogen-derived epitopes by major histocompatibility complex class II (MHC class II) before processing, and resistance to HLA-DM-mediated-dissociation preserves the longevity of those epitopes. We show that immunodominance is established by higher relative abundance of the selected epitopes, which survive cathepsin digestion either by binding to MHC class II and resisting DM-mediated-dissociation, or being chemically resistant to cathepsins degradation. Non-dominant epitopes are sensitive to both DM and cathepsins and are destroyed.


Assuntos
Autoantígenos/imunologia , Epitopos Imunodominantes/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Linfócitos T/imunologia , Proteínas Virais/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Autoantígenos/química , Autoantígenos/genética , Catepsinas/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas Virais/química , Proteínas Virais/genética
10.
J Clin Med ; 3(2): 373-87, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26237380

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids), bone, optic vesicle-like structures (eye), cardiac muscle tissue (heart), primitive pancreas islet cells, a tooth-like structure (teeth), and functional liver buds (liver). Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1) such transplants will stimulate host immune responses; and (2) whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by iPSC-derived cells and tissues.

11.
J Proteomics ; 94: 23-36, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24029068

RESUMO

The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE: We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.


Assuntos
Apresentação de Antígeno/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Timo/metabolismo , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Lactente , Masculino , Especificidade de Órgãos/fisiologia , Linfócitos T/metabolismo
12.
Int Immunol ; 25(10): 563-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23929911

RESUMO

Reported alterations in T(reg) cells from type 1 diabetes (T1D) patients led us to a revision of their phenotypical features compared with controls. A fine cytometric analysis was designed for their characterization, using a panel of markers including FOXP3, CTLA4, glucocorticoid-induced TNFR family related (GITR) and CD127. The frequency of peripheral CD4(+)CD25(hi) T(reg) cells was similar between samples. However, the yield of sorted T(reg) cells was significantly lower in patients than in controls. When comparing the T(reg)-cell phenotype between samples, the only difference concerned the expression of GITR. A significant decrease of GITR(+) cells and GITR mean fluorescence intensity within the T(reg)-cell population, and to a lesser extent in the effector population, was observed in T1D compared with controls. Moreover, GITR expression was analyzed in several conditions of T-cell activation and differences were only observed in T1D T(reg) cells versus controls when responding to sub-optimal stimulation, that is, soluble anti-CD3 or medium alone but not in the presence of anti-CD3-/anti-CD28-coated beads. However, expanded T1D T(reg)-cell-mediated suppression was as efficient as that mediated by their control counterparts, showing no association between their regulatory capacity and the reduced GITR. Our results show a higher susceptibility to apoptosis in patients' versus controls' T(reg) cells, suggesting that GITR is a T(reg)-cell marker that would be primarily involved in T(reg)-cell survival rather than in their suppressor function.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Linfócitos T Reguladores/imunologia , Adulto , Antígenos CD4/metabolismo , Separação Celular , Sobrevivência Celular , Feminino , Citometria de Fluxo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Humanos , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Eur J Immunol ; 43(9): 2273-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23719902

RESUMO

Major histocompatibility complex class II (MHC-II) molecules bind to and display antigenic peptides on the surface of antigen-presenting cells (APCs). In the absence of infection, MHC-II molecules on APCs present self-peptides and interact with CD4(+) T cells to maintain tolerance and homeostasis. In the thymus, self-peptides bind to MHC-II molecules expressed by defined populations of APCs specialised for the different steps of T-cell selection. Cortical epithelial cells present peptides for positive selection, whereas medullary epithelial cells and dendritic cells are responsible for peptide presentation for negative selection. However, few data are available on the peptides presented by MHC molecules in the thymus. Here, we apply mass spectrometry to analyse and identify MHC-II-associated peptides from five fresh human thymus samples. The data show a diverse self-peptide repertoire, mostly consisting of predicted MHC-II high binders. Despite technical limitations preventing single cell population analyses of peptides, these data constitute the first direct assessment of the HLA-II-bound peptidome and provide insight into how this peptidome is generated and how it drives T-cell repertoire formation.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos HLA-DR/análise , Timo/imunologia , Apresentação de Antígeno , Células Apresentadoras de Antígenos/citologia , Linfócitos T CD4-Positivos/citologia , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Tolerância Imunológica , Ativação Linfocitária , Espectrometria de Massas , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Peptídeos/análise , Proteoma/análise , Timo/citologia
14.
Front Immunol ; 4: 442, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24381570

RESUMO

T-cell tolerance to self-antigens is established in the thymus through the recognition by developing thymocytes of self-peptide-MHC complexes and induced and maintained in the periphery. Efficient negative selection of auto-reactive T cells in the thymus is dependent on the in situ expression of both ubiquitous and tissue-restricted self-antigens and on the presentation of derived peptides. Weak or inadequate intrathymic expression of self-antigens increases the risk to generate an autoimmune-prone T-cell repertoire. Indeed, even small changes of self-antigen expression in the thymus affect negative selection and increase the predisposition to autoimmunity. Together with other mechanisms, tolerance is maintained in the peripheral lymphoid organs via the recognition by mature T cells of a similar set of self-peptides in homeostatic conditions. However, non-lymphoid peripheral tissue, where organ-specific autoimmunity takes place, often have differential functional processes that may lead to the generation of epitopes that are absent or non-presented in the thymus. These putative differences between peptides presented by MHC molecules in the thymus and in peripheral tissues might be a major key to the initiation and maintenance of autoimmune conditions.

15.
Int Immunol ; 24(1): 59-69, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194283

RESUMO

Dendritic cells (DCs) migrating from peripheral tissues at steady state are considered the most efficient antigen-presenting cells (APCs) involved in the induction of peripheral T-cell tolerance via self-antigen presentation on MHC class II molecules. However, difficulties in obtaining sufficient numbers of such DCs have precluded previous analyses of their natural MHC class II peptidome in laboratory animals or humans. Here, we overcome this difficulty by collecting the large quantities of sheep DCs that migrate from the skin via the afferent lymphatics at steady state to the draining lymph node. We compared the repertoire of MHC class II-bound peptides from afferent lymph DCs with autologous APCs derived from peripheral blood. A large fraction of the MHC class II peptidome from skin DCs was derived from membrane-recycling proteins (59%) and from proteins of the antigen presentation machinery (50%), whereas these types of peptides constituted a more limited fraction in blood APCs (21 and 11%, respectively). One sheep cytokeratin peptide was identified in the skin DC peptidome indicating active processing of epithelium-derived antigens. Conversely, peptides derived from cytosolic and soluble antigens of the extracellular milieu were more represented in blood APCs than skin DCs. The biased peptidome of skin-migrated DCs indicates that these cells express a peptide repertoire for the generation of self-reactive and/or regulatory T cells mainly directed toward DC molecules from internal and external membranes and to a lesser extent toward antigens of the extracellular milieu, including some tissue-specific peptides.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Pele/imunologia , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Autoantígenos/imunologia , Autoantígenos/metabolismo , Cromatografia Líquida de Alta Pressão , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Genótipo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfa/imunologia , Linfa/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/metabolismo , Proteômica , Ovinos , Pele/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
17.
J Immunol ; 186(6): 3787-97, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325620

RESUMO

Autoreactive T cells, responsible for the destruction of pancreatic ß cells in type 1 diabetes, are known to have a skewed TCR repertoire in the NOD mouse. To define the autoreactive T cell repertoire in human diabetes, we searched for intraislet monoclonal expansions from a recent onset in human pancreas to then trace them down to the patient's peripheral blood and spleen. Islet infiltration was diverse, but five monoclonal TCR ß-chain variable expansions were detected for Vß1, Vß7, Vß11, Vß17, and Vß22 families. To identify any sequence bias in the TCRs from intrapancreatic T cells, we analyzed 139 different CDR3 sequences. We observed amino acid preferences in the NDN region that suggested a skewed TCR repertoire within infiltrating T cells. The monoclonal expanded TCR sequences contained amino acid combinations that fit the observed bias. Using these CDR3 sequences as a marker, we traced some of these expansions in the spleen. There, we identified a Vß22 monoclonal expansion with identical CDR3 sequence to that found in the islets within a polyclonal TCR ß-chain variable repertoire. The same Vß22 TCR was detected in the patient's PBMCs, making a cross talk between the pancreas and spleen that was reflected in peripheral blood evident. No other pancreatic monoclonal expansions were found in peripheral blood or the spleen, suggesting that the Vß22 clone may have expanded or accumulated in situ by an autoantigen present in both the spleen and pancreas. Thus, the patient's spleen might be contributing to disease perpetuation by expanding or retaining some autoreactive T cells.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Receptores de Antígenos de Linfócitos T/biossíntese , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Sequência de Aminoácidos , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Movimento Celular/imunologia , Regiões Determinantes de Complementaridade/biossíntese , Regiões Determinantes de Complementaridade/sangue , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/sangue , Ilhotas Pancreáticas/patologia , Ativação Linfocitária/imunologia , Dados de Sequência Molecular , Receptores de Antígenos de Linfócitos T/sangue , Baço/patologia , Subpopulações de Linfócitos T/patologia , Adulto Jovem
19.
J Proteome Res ; 9(5): 2600-9, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20218732

RESUMO

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive autoimmune disease, affecting many endocrine tissues. APECED is associated to the lack of function of a single gene called AutoImmune REgulator (AIRE). Aire knockout mice develop various autoimmune disorders affecting different organs, indicating that Aire is a key gene in the control of organ-specific autoimmune diseases. AIRE is mainly expressed by medullary thymic epithelial cells (mTECs), and its absence results in the loss of tolerance against tissue restricted antigens (TRAs). Aire induces the transcription of genes encoding for TRAs in mTECs. In this report, the analysis of AIRE's effect on the cellular proteome was approached by the combination of two quantitative proteomics techniques, 2D-DIGE and ICPL, using an AIRE-transfected and nontransfected epithelial cell line. The results showed increased levels of several chaperones, (HSC70, HSP27 and tubulin-specific chaperone A) in AIRE-expressing cells, while various cytoskeleton interacting proteins, that is, transgelin, caldesmon, tropomyosin alpha-1 chain, myosin regulatory light polypeptide 9, and myosin-9, were decreased. Furthermore, some apoptosis-related proteins were differentially expressed. Data were confirmed by Western blot and flow cytometry analysis. Apoptosis assays with annexin V and etoposide demonstrated that AIRE-positive cells suffer more spontaneous apoptosis and are less resistant to apoptosis induction.


Assuntos
Apoptose/fisiologia , Células Epiteliais/metabolismo , Proteoma/análise , Proteômica/métodos , Fatores de Transcrição/biossíntese , Proteínas de Ligação a Calmodulina/análise , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Proteínas de Choque Térmico HSP70/análise , Humanos , Marcação por Isótopo , Reprodutibilidade dos Testes , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
20.
Inmunología (1987) ; 28(3): 147-152, jul.-sept. 2009. ilus
Artigo em Espanhol | IBECS | ID: ibc-108257

RESUMO

La Garantía de Calidad es un elemento central para el funcionamientode todo laboratorio, y va más allá de únicamente disponer de controles decalidad internos y externos en la determinación analítica. La Sociedad Espa-ñola de Inmunología (SEI) promueve un proceso para la selección de un centro responsable (CR) donde desarrollar un programa concreto para la deGarantía Externa de Calidad para Laboratorios de Inmunología Diagnósticaasociado a la Sociedad Española de Inmunología (GECLID-SEI). Este escrito presenta los aspectos principales de este proceso que debería permitir laestructuración del GECLID-SEI (AU)


Quality assurance is a key element for the functioning of any laboratory, and it goes further than just the internal and external quality controls of analytical parameters. The Spanish Society for Immunology (SEI)promotes a process to select a Center (CR) that will develop a completeprogram of External Quality Assurance for Diagnostic Immunology Laboratories, associated with the Spanish Society for Immunology (GECLIDSEI). This text presents the main aspects of this process that should allowstructuring the GECLID-SE (AU)


Assuntos
Humanos , Laboratórios/normas , Testes Imunológicos/normas , Técnicas Imunológicas/normas , Amostragem para Garantia da Qualidade de Lotes/métodos , Controle de Qualidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...